

Marine Fuel Cells

Marine Vessel and Air Quality Conference

1-2 February 2001 Hyatt Regency Hotel San Francisco, CA

Donald Hoffman Technical Manager, 824 Naval Sea Systems Command Philadelphia

What is a Fuel Cell

A Fuel Cell operates likes a battery. It supplies electricity by combining hydrogen and oxygen electrochemically without combustion. Unlike a battery, it does not run down or require recharging and will produce electricity, heat and water as long as fuel is supplied.

Fuel Cell Types

	Electrolyte	Cell Temp (°F)	Lifetime Projected (Hrs)	Cell Contaminant	Single-Cycle Electrical Efficiency (%)
Proton Exchange Membrane (PEM)	Polymer Membrane (Solid)	180	40,000	S, CO	35-40
Alkaline (AFC)	Potassium Hydroxide (Solid)	200	10,000	CO, CO2	<40
Phosphoric Acid (PA)	Phosphoric Acid (Liquid)	450	40,000	S,CO	35-40
Molten Carbonate (MC)	Potassium Lithium Carbonate (Liquid)	1200	40,000	S	45-55
Solid Oxide (SO) [Tubular, planar, monolithic]	Zirconium Dioxide Ceramic (Solid)	1800	40,000	S	45-60

Fuel Cell Manufacturers

	PA	PEM	MC	SOFC
Ballard		Х		
DAIS Analytic		X		
Fuel Cell Energy			Х	
H Power		Х		
Honeywell		Х		Х
International Fuel Cells	Х	Х		
Plug Power		Х		
Siemens Westinghouse				Х
Technology Management Inc				Х
Ztek				Х

Shipboard Market

- Marine Market Surveys for fuel cell power sources by MTI for PEM systems and FCE for MC systems conclude:
 - Ship Service fuel cell generators for both commercially and Military Marine Markets compete economically with small turbines and marine diesels in terms of life cycle costing.
 - Diesel-fueled fuel cell ship service generator system for commercial marine applications will be in the 200 kW to
 1 Mw range; military applications in the 500 kW to 2.5 Mw range.
 - Military represents only 1% of total marine FC market.
- Independent USCG marine market survey validates conclusions.
- DOE/Industry also project future new concept higher power, ultra-high efficiency fuel cell power systems adaptable for marine high power propulsion applications

Diesel-fueled commercial and military surface ship markets represents a significant potential market; circa 2005.

Fuel Cell Design Comparison

<u>Design Issues</u>	Ships	Cars Trucks	Utility
Power Density	High	High	Low
Fuel Type	Navy Distillate/ Marine Diesel	Gasoline/H2/ Methanol/Diesel	Natural Gas/ Coal Derived
Life, MTBO	40,000 Hrs	10,000 Hrs	40,000 Hrs
Dynamic Response	Fast	Fast	Slow
Operating Environment	Severe	Moderate	Benign

Navy Shipboard Fuel Cell Program

Program Summary

<u>Objective:</u> Develop shipboard fuel cell power systems with acquisition cost, weight, and volume comparable to other market options, for future Navy ships and craft.

<u>State of the Art:</u> Industry is developing fuel cell technology for stationary and non-marine transportation applications operating on non-logistics fuels. Commercial units expected between 2001 and 2005, with stationary systems available before automotive systems. Little effort in diesel reformation.

Approach: Develop fuel cell power systems and components to enable commercial fuel cell equipment to be used in the unique Naval shipboard environment.

Navy Shipboard Fuel Cell Program

Navy Technical Challenges

- Fuel Type✓ Logistic Fuel reforming
- Power Density, Cost & System Efficiency
- Reliability and Maintainability
- Duty Cycle/Transient Response
- Marine Environment
 - ✓ Cell Life
 - ✓ Environmental Contaminants
 - ✓ Shock & Vibration
 - ✓ Ship Motions

Navy Shipboard Fuel Cell Program

Goals/Metrics

	DDG-51 GTG	AOE-6 SSDG	SSFC Goals 2005	HPFC Goals 2010
Unit Volume (ft3/kW)	1.1	2.84	2	TBD
Unit Weight (lb/kW)	27.2	36.4	40	TBD
Fuel Efficiency (at 50% load)	16%	37%	40%	70%
Acquisition Cost (\$/kW)	1600	480	1500	1200
Scalable to: (MW)	-	-	3	20

SSFC: Ship Service Fuel Cell Program HPFC: High Performance Fuel Cell Program

Navy Shipboard Fuel Cell Program

Ship Service Fuel Cell Program Demonstration

McDermott Technology

$500kW\ SSFC\ Autothermal\ Reformer\ (ATR)\ based\ NATO\ F76\ Diesel\ Integrated\ Fuel\ Processor\ (IFP)$

PHASE I: Completed (\$ 4.5 M) FY00

- 2.5 MW PEM SSFC Conceptual Design
 Sub-scale risk reduction demonstrations
 Cell salt air tolerance

 - NATO F-76 diesel fuel reforming
 Fuel contaminant removal and cell sensitivity (sulfur, CO,
 - ammonia, amines)
 - · Cell shock and vibration
- Analytical performance model
 Marine/Navy market surveys

PHASE II: (36 month, \$16.5M 50% cost shared ONR program.

- Initial \$1.8M ONR contract award July 00 to MTI)
 500kW IFP preliminary design
 500kW IFP detailed design
- 500kW IFP fabrication
- 500kW IFP factory testing
- · Dynamic simulation model

Navy Shipboard Fuel Cell Program

HPFC S&T Development

Solid Oxide Fuel Cell coupled to a gas turbine generator to provide a 70% efficient power source scaleable to 20MW.

- Advanced Fuel Reforming
- Sulfur Tolerance
- HPFC Design & Trade Off
- SOFC/GT Hybrid Modeling
- SOFC Marinization
- Multistage FC

Navy Shipboard Fuel Cell Program **Interagency Working Group**

RADM John T. Tozzi

RADM G. Gaffney, II Chief of Naval Research

Mission Statement

Diana H. Josephson Deputy Undersecretary for Ocean Management & Atmosphere

- Foster the use of Fuel Cells for ship applications utilizing diesel fuels to fulfill national transportation needs.
- •Transfer the technology to the public.
- Actively involve industry in the development efforts.
- •Reduce duplicative efforts coordinate/cooperate on marine fuel cell requirements.

John E. Graykowski Maritime Administration

Research, Technology & Analysis

Original Signatories to MOU Approved 2 February 1998

Foreign Marine Fuel Cell Interest

- Canada: Ballard developing 200 kW methanol/LOX fuel cell for military submarines.
- Germany:
 - Siemens Power Generations Group recently delivered 300 kW PEM fuel cell for Class 212 submarines.
 - HDW has tested 2 Ballard 80 kW PEM power plants for submarine service.
- UK: UK is interested in jointly developing a 1.5 MW ship service PEM fuel cell.
- French & Netherlands Navies are investigating marine fuel cell applications.
- Japan: Evaluating fuel cells for marine applications.
- Italian Navy: Proposed 1MW MC FC system for surface ship applications.
- 4 NATO Countries supporting diesel fuel reforming (100 KW) demonstrations.

Summary

- High efficiency fuel cell systems provide the potential for substantial payoff with reduced production of overall emissions in commercial and military applications.
- ONR/NAVSEA program underway to demonstrate Fuel Cell Power Systems for future naval combatants and other craft.
- Navy Shipboard Fuel Cell Program is developing technology to overcome unique Navy technical challenges while leveraging commercial fuel cell advancements.